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Véronique Benzaken 2, Jean-Daniel Fekete 1, Pierre-Luc Hémery 1, Wael Khemiri 1,2, Ioana Manolescu 1,2
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Abstract—Visual analytics aims at combining interactive data
visualization with data analysis tasks. Given the explosion in vol-
ume and complexity of scientific data, e.g., associated to biological
or physical processes or social networks, visual analytics is called
to play an important role in scientific data management.
Most visual analytics platforms, however, are memory-based,

and are therefore limited in the volume of data handled. More-
over, the integration of each new algorithm (e.g. for clustering)
requires integrating it by hand into the platform. Finally, they
lack the capability to define and deploy well-structured processes
where users with different roles interact in a coordinated way
sharing the same data and possibly the same visualizations.
We have designed and implemented EdiFlow, a workflow

platform for visual analytics applications. EdiFlow uses a simple
structured process model, and is backed by a persistent database,
storing both process information and process instance data.
EdiFlow processes provide the usual process features (roles,
structured control) and may integrate visual analytics tasks as
activities. We present its architecture, deployment on a sample
application, and main technical challenges involved.

I. INTRODUCTION

The increasing amounts of electronic data of all forms,

produced by humans (e.g., Web pages, structured content such

as Wikipedia or the blogosphere) and automatic tools (loggers,

sensors, Web services, scientific programs or analysis tools)

lead to a situation of unprecedented potential for extracting

new knowledge, finding new correlations, and interpreting

data. Visual analytics is a new branch of the information

visualization / human-computer interaction field [1]. Its aim

is to enable users to closely interact with vast amounts of data

using visual tools. Thanks to these tools, a human may detect

phenomena or trigger detailed analysis which may not have

been identifiable by automated tools alone. Visual analytics

tools routinely include some capacity to mine or analyze

the data; however, most applications require specific analysis

functions.

Though, most current visual analytics tools have some

conceptual drawbacks. Indeed, they rarely rely on persistent

databases (with the exception of [2]). Instead, the data is

loaded from files or databases and is manipulated directly in

memory because smooth visual interaction requires redisplay-

ing the manipulated data 10-25 times per second. Standard

database technologies do not support continuous queries at

this rate; at the same time, ad-hoc in-memory handling of

classical database tasks (e.g., querying, sorting) has obvious

limitations. Based on our long-standing experience developing

information visualisation tools [3] [4] [5], we argue connecting

a visual analysis tool to a persistent database management

system (DBMS) has many benefits:

• Scalability: larger data volumes can be handled based on

a persistent DBMS

• Persistence and distribution: several users (possibly on

remote sites) can interact with a persistent database,

whereas this is not easily achieved with memory-resident

data structures. Observe that users may need to share not

only raw data, but also visualizations built on top of this

data. A visualization can be seen as an assignment of

visual attributes (e.g., X and Y coordinates, color, size)

to a given set of data items. Computing the value of the

visual attributes may be expensive, and/or the choice of

the visualized items may encapsulate human expertise.

Therefore, visualizations have high added value and it

must be easy to store and share them, e.g., allowing

one user to modify a visualization that another user has

produced.

• Data management capabilities provided by the database:

complex data processing tasks can be coded in SQL

and/or some imperative scripting language. Observe that

such data processing tasks can also include user-defined

functions (UDFs) for computations implemented out-

side the database server. These functions are not stored

procedures managed by the database (e.g., Java Stored

Procedure). These are executable programs external to

the database.

The integration of a DBMS in a visualisation platform must

take into account the following prevalent aspects in today’s

visual analytics applications:

• Convergence of visual analytics and workflow: current

visual analytics tools are not based on workflow (process)

models. This fits some applications where datasets and

tasks are always exploratory and different from one
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session to the next. Several visual analytics applications

however, require a recurring process, well supported by

a workflow system. The data processing tasks need to be

organized in a sequence or in a loop; users with different

roles may need to collaborate in some application before

continuing the analysis. It also may be necessary to log

and allow inspecting the advancement of each execu-

tion of the application. (Scientific) workflows platforms

allow such automation of data processing tasks. They

typically combine database-style processing (e.g., queries

and updates) with the invocation of external functions,

implementing complex domain-dependent computations.

Well-known scientific workflow platforms include Ke-

pler [6], Taverna [7], or Trident [8]. These systems build

on the experience of the data and workflow management

communities; they could also benefit from a principled

way of integrating powerful visualisation techniques.

• Handling dynamic data and change propagation: an im-

portant class of visual analytics applications has to deal

with dynamic data, which is continuously updated (e.g.,

by receiving new additions) while the analysis process

is running; conversely, processes (or visualisation) may

update the data. The possible interactions between all

these updates must be carefully thought out, in order to

support efficient and flexible applications.

Our work addresses the questions raised by the integration

of a DBMS in a visual analytics platform. Our contributions

are the following:

1) We present a generic architecture for integrating a visual

analytics tool and a DBMS. The integration is based

on a core data model, providing support for (i) vi-
sualisations, (ii) declaratively-specified, automatically-
deployed workflows, and (iii) incremental propagation
of data updates through complex processes, based on

a high-level specification. This model draws from the

existing experience in managing data-intensive work-

flows [9], [10], [11], [12].

2) We present a simple yet efficient protocol for swiftly

propagating changes between the DBMS and the visual

analytics application. This protocol is crucial for the

architecture to be feasible. Indeed, the high latency of

a ”vanilla” DBMS connection is why today’s visual

analytics platforms do not already use DBMSs.

3) We have fully implemented our approach in a bare-

bones prototype called EdiFlow, and de facto ported the

InfoVis visual analytics toolkit [4] on top of a standard

Oracle server. We validate the interest of our approach

by means of three applications.

This article is organized as follows. Section II compares

our approach with related works. Section III describes three

applications encountered in different contexts, illustrating the

problems addressed in this work. Section IV presents our

proposed data model, while the process model is described

in Section V. We describe our integration architecture in

Section VI, discuss some aspects of its implementation in our

EdiFlow platform, we then conclude in Section VIII.

II. RELATED WORKS

Significant research and development efforts have resulted

in models and platforms for workflow specification and de-

ployment. Recently, scientific workflow platforms have re-

ceived significant attention. Different from regular (business-

oriented) workflows, scientific workflows notably incorporate

data analysis programs (or scientific computations more gen-

erally) as a native ingredient. Moreover, scientific workflows

are meant to be specified by scientists: their end users.

This contrasts with business workflows, usually specified by

business analysts which do not enact them. Both business and

scientific workflows are, by now, commonly deployed relying

on a DBMS for data storage and/or process control. Due to

the importance of visualisation and interaction, and to the

exploratory nature of visual analytics, we position our work

with respect to scientific workflows, to which it relates more

closely than usual business workflows.

One of the first integration of scientific workflows with

DBMSs was supported by [9]. Among the most recent and

well-developed scientific workflow projects, Kepler [13] is de-

signed to help scientists, analysts, and computer programmers

to create, execute, and share models and analyses across a

broad range of scientific and engineering disciplines. Kepler

provides a GUI which helps users to select and then connect

analytical components and data sources to create a scientific

workflow. In this graphical representation, the nodes in the

graph represent actors and the vertices are links between the

actors.

SciRun [14] is a Problem Solving Environment, for mod-

eling, simulation and visualization of scientific problems. It

is designed to allow scientists to interactively control scien-

tific simulations while the computation is running. SCIRun

was originally targeted at computational medicine but has,

later, been expanded to support other scientific domains. The

SCIRun environment provides a visual interface for dataflow

network’s construction. As the system will allow parameters

to be changed at runtime, experimentation is a key concept

in SCIRun. As soon as a parameter is updated, at run-

time, changes will propagated through the system and a re-

evaluation induced.

GPFlow [15] is a workflow platform providing an intuitive

web based environment for scientists. The workflow model is

inspired by spreadsheets. The workflow environment ensures

interactivity and isolation between the calculation components

and the user interface. This enables workflows to be browsed,

interacted with, left and returned to, as well as started and

stopped.

VisTrails [16] combines features of both workflow systems

and visualization fields. Its main feature is to efficiently

manage exploratory activities. The user interaction in Vis-

Trails is performed by iteratively refining computational tasks

and formulating test hypotheses. VisTrails maintains detailed

provenance of the exploration process. Users are able to return

to previous versions of a dataflow and compare their results.
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However, VisTrails is not meant to manage dynamic data. In

VisTrails, dynamicity is performed by allowing users to change

some attributes in order to compare visualization results. It

does not include any model to handle data changes. Indeed,

when the user starts its workflow process, VisTrails does not

take into account the updated data in activities that have

already started: there is no guarantee that the model for updates

is correct.

Trident [8], [17] is a scientific workflow workbench built

on top of a commercial workflow system. It is developed

by Microsoft corporation to facilitate scientific workflows

management. Provenance in Trident is ensured using a pub-

lication/subscription mechanism called the Blackboard. This

mechanism allows also for reporting and visualizing intermedi-

ate data resulting from a running workflow. One of the salient

features of Trident is to allow users to dynamically select

where to store results (on SQL Server for example) issued

by a given workflow. However, it does not support dynamic

data sources nor does it integrate mechanisms to handle such

data.

Orchestra [18], [19] addresses the challenge of mapping

databases which have potentially different schemas and in-

terfaces. Orchestra is specially focusing on bioinformatics

applications. In this domain, one find many databases contain-

ing overlapping informations with different level of quality,

accuracy and confidence. Database owners want to store a

relevant (”alive”)version of relevant data. Biologists would like

to download and maintain local ”live snapshots” of data to run

their experiments. The Orchestra system focus on reconcilia-

tion across schemas. It is a fully peer-to-peer architecture in

which each participant site specifies which data it trusts in.

The system allows all the sites to be continuously updated,

and on demand, it will propagate these updates across sites.

User interaction in Orchestra is only defined at the first level

using trust conditions. Moreover, the deployed mechanism is

not reactive. Indeed, there is no restorative functions called

after each insert/update operation.

Several systems were conceived to create scientific work-

flows using a graphical interface and enabling data mining

tasks (e.g., Knime [20] and Weka [21], RapidMiner [22],

Orange [23], [24]). However, none of these systems includes a

repair mechanism to support the change in data sources during

a task or process execution.

To summarize, all these platforms share some important

features, which we also base our work on. Workflows are

declaratively specified, data-intensive and (generally) multi-
user. They include querying and updating data residing in

some form of a database (or in less structured sources). Crucial

for their role is the ability to invoke external procedures,
viewed as black boxes from the workflow engine perspective.

The procedures are implemented in languages such as C, C++,

Matlab, Fortran. They perform important domain-dependent

tasks; procedures may take as input and/or produce as output
large collections of data. Finally, current scientific workflow
platforms do provide, or can be coupled with, some visualisa-
tion tools, e.g., basic spreadsheet-based graphics, map tools.

Fig. 1. US Election screen shot.

With respect to these platforms, our work makes two

contributions: (i) we show how a generic data visualisation

toolkit can be integrated as a first-class citizen; (ii) we present
a principled way of managing updates to the underlying

sources, throughout the enactment of complex processes. This

problem is raised by the high data dynamicity intrinsic to

visual analytics applications. However, the scope of its po-

tential applications is more general, as long-running scientific

processes may have to handle data updates, too. None of these
platforms are currently able to propagate data changes to a
running process. The process model we propose could be

integrated, with some modest programming effort, in such

platforms, hence offering complementary functionalities to

their existing ones.

Most of existing interactive platforms for data visualiza-

tion [3], [25] focus on the interaction between the human

expert and a data set consisting of a completely known set

of values. They do not ease the inclusion of data analysis

programs on the data. Moreover, as previously explained,

most of them do not support the definition of structured

processes, nor (by absence of an underlying DBMS) do they

support persistence and sharing. An exception is [2] which is

a visualization tool combining database technology. However,

there is no repair machanism and the change propagation is

not supported.

Unlike current data visualisation platforms, our work pro-

vides a useful coupling to DBMSs, providing persistent stor-

age, scalability, and process support. Our goal is to drastically

reduce the programming effort actually required by each new

visual analytics application, while enabling them to scale up

to very large data volumes. In this work, we present an

architecture implementing a repair mechanism, to propagate

data source changes to an executing process.

III. USE CASES

The following applications illustrate the data processing and

analysis tasks which this work seeks to simplify.

a) US Elections: This application aims at providing a

dynamic visualisation of elections outcome, varying as new

election results become available. The database contains, for

each state, information such as the party which won the State

during the last three elections, the number of voters for the
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Fig. 2. Wikipedia screen shot.

two candidates, the total population of the state. On the voting

day, the database gradually fills with new data. This very

simple example uses a process of two activities: computing

some aggregates over the votes, and visualizing the results.

Upon starting, a TreeMap visualisation is computed over the

database (distinguishing the areas where not enough data is

available yet), as shown in Figure 1. The user can choose a

party, then the 51 states are shown with varying color shades.

The more the states vote for the respective party, the darker

the color. When new vote results arrive, the corresponding

aggregated values are recomputed, and the visualisation is

automatically updated.

b) Wikipedia: The goal of the application is to propose
to Wikipedia readers and contributors some measures related

to the history of an article. e.g., how many authors contributed

to an article? How did a page evolve over time? A more

complex metric is how ”durable” are the contributions of

a given user? This last metric corresponding to the inverse

number of characters inserted by the user divided by the

characters remaining in the latest version. The challenge

is then, to compute and store such metrics for the whole

Wikipedia database. It can then be displayed to users close to

the pages (s)he consults [26] or explored more thoroughly [27].

One must also update those metrics as the Wikipedia site

is updated. The metrics are produced and visualized by the

application, whereas the (current) Wikipedia page is displayed

directly from the original site, as shown in Figure 2.

This application can be decomposed in four elementary

tasks: (i) compute the differences between successive versions
of each article; (ii) compute a contribution table, storing at

each character index, the identifier of the user who entered it;

(iii) for each article, compute the number of distinct effective
contributors; and (iv) compute the total contribution (over

all contribution tables) of each user. All these computations’

results must be continuously updated to reflect the continuous

changes in the underlying data. A total recomputation of the

aggregation is out of reach, because change frequency is too

high (10 edits per second on average for the French Wikipedia,

containing about 1 million pages). Moreover, updates received

at a given moment only affect a tiny part of the database.

Thus, the Wikipedia application requires: a DBMS for storing

huge amounts of data; a well-defined process model including

ad-hoc procedures for computing the metrics of interest;

incremental re-computations; and appropriate visualisations.

c) INRIA activity reports: We have been involved in the
development of an application seeking to compute a global

view of INRIA researchers by analysing some statistics. The

data are collected from Raweb (INRIA’s legacy collection

of activity reports available at http://ralyx.inria.fr). These data
include informations about INRIA teams, scientists, publi-

cations and research centres. Currently, the report of each

team from each year is a separate XML file; new files are

added as teams produce new annual reports. Our goal was

to build a self-maintained application which, once deployed,

would automatically and incrementally re-compute statistics,

as needed. To that end, we first created a database out of all the

reports for the years 2005 to 2008. Simple statistics were then

be computed by means of SQL queries: age, team, research

center distribution of INRIA’s employees. Other aggregates

were computed relying on external code such as the similarity

between two people referenced in the reports in order to

determine whether an employee is already present in the

database or needs to be added.

All these applications feature data- and computation-centric

processes which must react to data changes while they are

running and need visual data exploration. The Wikipedia

application is the most challenging, by the size of the database,

the complexity of its metrics, and the high frequency of

updates requiring recomputations.

IV. DATA MODEL

In this Section, we describe our conceptual data model in

Section IV-A, and its concrete implementation in a relational

database in Section IV-B.

A. Conceptual data model

The conceptual data model of visual analytics application is

depicted in Figure 3. For the sake of readability, entities and

relationships are organized in several groups.

The first group contains a set of entities capturing process
definitions. A process consists of some activities. An activity

must be performed by a different group of users (one can also

see a group as a role to be played within the process). Process

control flow is not expressed by the data model, rather, it is

described in the process model (see Section V). An activity

instance has a start date and an end date, as well as a status
flag ranging in the following set of values: {not started, run-
ning, completed}. The flag not started states that the activity
instance is created by a user who assigns it to another for

completion, but the activity’s task has not started yet. The

running flag indicates that the activity instance has started and
has not yet finished. Finally, the flag completed means that the
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Fig. 3. Entity-relationship data model for EdiFlow.

activity instance has terminated. Process instances will also

take similar values.

Entities in the second group allow recording process execu-
tion. Individual users may belong to one or several groups. A
user may perform some activity instances, and thus be involved

in specific process instances. A ConnectedUser records the
host and port from which a user connects at a given time. This

information is needed to propagate updates, received while

the process is running, to a potentially remote visualisation

component running on the remote user’s desktop. This point

will be further discussed in Section VI.

The gray area can be seen as a meta-model, which has

to be instantiated for any concrete application with one or

several entities and relationships modelling it. For instance, in

the Wikipedia application, one would use the entities Article,
User, and Version, with relationships stating that each version
of an article is produced by one user’s article update. Black-

box functions, such as Wikipedia user clustering functions,

must also be captured by this application-dependent part of

the data model. Tracking workflow results requires at a simple

level that for each data instance, one may identify which

activity instance which created it, updated it etc. To that pur-

pose, specific customized relationships of the form createdBy,
validatedBy may be defined in the conceptual model. They are
represented in Figure 3 by the gray background relationship

between ApplicationEntity and ActivityInstance. Of course,
many more complex data provenance models can be devised

e.g., [16], [28]. This aspect is orthogonal to our work.

The third group of entities is used to model visualization.

A Visualization consists of one or more VisualisationCompo-
nents. Each component offers an individual perspective over

a set of entity instances. For example, in Figure 2, three

visualisation components are shown in the bar at the left of

the article, making up a given visualization associated with

the article’s edit history. Components of a same visualisation

correspond to different ways of rendering the same objects. In

each visualisation component, a specific set of VisualAttributes
specifies how each object should be rendered. Common visual

attributes include (x, y) coordinates, width, height, color, label
(a string), whether the data instance is currently selected by

a given visualisation component (which typically triggers the

recomputation of the other components to reflect the selection).

Finally, the Notification entity is used to speedily propagate
updates to the application entities in various places within

a running process. A notification is associated with one or

more instances of a particular application entity. It refers

to an update performed at a specific moment indicated by

the seq no timestamp, and indicates the kind of the update

(insert/delete/modify). Its usage is detailed in Section VI.

B. Concrete data model

We assume a simple relational enactment of this conceptual
model. We have considered XML but settled for relations

since performant visualisation algorithms are already based

on a tabular model [4]. Thus, a relation is created for each

entity endowed with a primary key. Relationships are captured

by means of association tables with the usual foreign key

mechanism. By issuing a query to the database, one can

determine ”which are the completed activity instances in

process P ”, or ”which is the R tuple currently selected by

the user from the visualization component V C1”.

We distinguish two kinds of relations. DBMS-hosted re-
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Process ::= Configuration Constant*
Variable+ Relation+
Function* StructProcess

Configuration ::= DBdriver DBuri DBuser
Constant ::= name value name ∈ N , value

∈ V
Variable ::= name type name ∈ N , type

∈ T
Relation ::= name primaryKey RelType
RelationType ::= (attName attType)*, attName ∈

N , attType ∈ T
Function := name classPath
StructuredProcess := Activity | Sequence |

AndSplitJoin | OrSplitJoin
| ConditionalProcess

Sequence ::= Activity , StructuredProcess
AndSplitJoin ::= AND-split (StructuredProcess)+

AND-join
OrSplitJoin ::= OR-split (StructuredProcess)+

OR-join
ConditionalProcess::= IF Condition StructuredProcess
Activity ::= activityName Expression
Expression ::= askUser | callFunction | run-

Query

Fig. 4. XML schema for the process model.

lations are by definition persistent inside a database server

and their content is still available after the completion of all

processes. Such relations can be used in different instances,

possibly of different processes. In contrast, temporary relations

are memory-resident, local to a given process instance (their

data are not visible and cannot be shared across process

instances) and their lifespan is restricted to that of the process

instance which uses them. If temporary relation data are to

persist, they can be explicitly copied into persistent DBMS

tables, as we shortly explain below.

V. PROCESS MODEL

We consider a process model inspired by the basic Workflow

Management Coalition model [29]. Figure 4 outlines (in a

regular expression notation) the syntax of our processes. We

use a set of variables, constants and attribute names N , a

set of atomic values V , and a set of atomic data types T ;
terminal symbols used in the process structure are shown in

boldface. The main innovative ingredient here is the treatment

of data dynamics, i.e., the possibility to control which changes
in the data are propagated to which part(s) of which process

instances. We now describe the process model in detail.

Relations and queries A process is built on top of a set of

relations implementing the data model. Relations are denoted

by capital letters such as R,S, T , possibly with subscripts. A
query is a relational algebraic expression over the relations.

We consider as operators: selection, projection, and cartesian

product. Queries are typically designated by the letter Q
possibly with subscripts.

Variables A variable is a pair composed of a name, and of an

(atomic) value. Variables come in handy for modelling useful

constants, such as, for example, a numerical threshold for a

clustering algorithm. Variables will be denoted by lower-case

letters such as v, x, y.

Procedures A procedure is a computation unit implemented

by some external, black-box software. A typical example is

the code computing values of the visual attributes to be used

in a visualisation component. Other examples include e.g.,

clustering algorithms, statistical analysis tools.

A procedure takes as input l relations R1, R2, . . . , Rl which

are read but not changed and m relations Tw
1 , Tw

2 , . . . , Tw
m

which the procedure may read and change, and outputs data
in n relations:

p : R1, R2, . . . , Rl, T
w
1 , Tw

2 , . . . , Tw
m → S1, S2, . . . , Sn

We consider p as a black box, corresponding to software

developed outside the database engine, and outside of EdiFlow

by means of some program expressed e.g., in C++, Java,

MatLab. Functions are processes with no side effects (m = 0).

Delta handlers Associated to a procedure may be procedure
delta handlers. Given some update (or delta) to a procedure
input relation, the delta handler associated to the procedure

may be invoked to propagate the update to a process. Two

cases can be envisioned:

1) Update propagation is needed while the procedure is be-

ing executed. Such is the case for instance of procedures

which compute point coordinates on a screen, and must

update the display to reflect the new data.

2) Updates must be propagated after the procedure has

finished executing. This is the case for instance when the

procedure performs some quantitative analysis of which

only the final result matters, and such that it can be

adjusted subsequently to take into account the deltas.

The designer can specify one or both of these handlers.

Formally, each handler is a procedure in itself, with a table

signature identical to the main procedure. The convention is

that if there are deltas only for some of p’s inputs, the handler
will be invoked providing empty relations for the other inputs.

With respect to notations, ph,r is the handler of p to be used
while p is running, and ph,f is the handler to be used after

p finished. Just like other procedures, the implementation of
handlers is opaque to the process execution framework. This

framework, however, allows one to recuperate the result of a

handler invocation and inject it further into the process, as we

shall see.

Distributive procedures An interesting family of procedures
are those which distribute over union in all their inputs. More

formally, let X be one of the Ri inputs of p, and let ΔX be

the set of tuples added to X . If p is distributive then:

p(R1, . . . , X ∪ ΔX, . . . , Tw
m)= p(R1, . . . , X, . . . , Tw

m)
∪ p(R1, . . . ,ΔX, . . . , Tw

m)

There is no need to specify delta handlers for procedures

which distribute over the union, since the procedure itself can

serve as handler.

Expressions We use a simple language for expressions,

based on queries and procedures. More formally:

e::=Q | p(e1, e2, . . . , en, Tw
1 , Tw

2 , . . . , Tw
p ).tj , 1 ≤ j ≤ m
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The simplest expressions are queries. More complex expres-

sions can be obtained by calling a procedure p, and retaining
only its j-th output table. If p changes some of its input table,
evaluating the expression may have side effects. If the side

effects are not desired, p can be invoked by giving it some

new empty tables, which can be memory-resident, and will be

silently discarded at the end of the process. Observe that the

first n invocation parameters are expressions themselves. This

allows nesting complex expressions.

Activities We are now ready to explain the building blocks

of our processes, namely activities.

a ::= v ← α | upd(R) |
(S1, S2, . . . , Sn) ← p(e1, e2, . . . , en, T

w
1 , Tw

2 , . . . , Tw
n )

Among the simplest activities are variable assignments of
the form v ← α. Another simple activity is a declarative

update of a table R, denoted upd(R). Unlike the table modifi-
cations that an opaque procedure may apply, these updates

are specified by a declarative SQL statement. Finally, an

activity may consist of invoking a procedure p by providing

appropriate input parameters, and retaining the outputs in a

set of tables.

Visualisation activities must be modeled as procedures,

given that their code cannot be expressed by queries.

Processes A process description can be modelled by the

following grammar:

P ::= ε | a, P | P‖P | P ∨ P | e?P
In the above, a stands for an activity. A process is either

the empty process (ε), or a sequence of an activity followed
by a process (,), or a parallel (and) split-join of two processes
(‖), or an or split-join of two processes (with the semantics

that once a branch is triggered, the other is invalidated and

can no longer be triggered). Finally, a process can consist of

a conditional block where an expression e (details below) is
evaluated and if this yields true, the corresponding process is

executed.

Reactive processes A reactive process can now be defined

as a 5-tuple consisting of a set of relations, a set of variables, a

set of procedures, a process and a set of update propagations.
More formally:

RP ::= R∗, v∗, p∗, P, UP ∗

An update propagation UP specifies what should be done

when a set of tuples, denoted ΔR, are added to an application-
dependent relation R, say, at tΔR. Several options are possible.

We discuss them in turn, and illustrate with examples.

1) Ignore ΔR for the execution of all processes which had

started executing before tΔR. The data will be added

to R, but will only be visible for process instances
having started after tΔR. This recalls locking at process

instance granularity, where each process operates on

exactly the data which was available when the process

started. We consider this to be the default behavior for

all updates to the relations part of the application data

model.

Use case: A social scientist applies a sequence of

semi-automated partitioning and clustering steps to a

set of Wikipedia pages. Then, the scientist visualises

the outcome. In this case, propagating new items to

the visualisation would be disruptive to the user, which

would have to interrupt her current work to help apply

the previous steps to the new data.

2) Ignore ΔR for the execution of all activities which

had started executing (whether they are finished or not)

before tΔR. However, for a process already started,
instances of a specific activity which start after tΔR may

also use this data.

Use case: The social scientist working on a Wikipedia

fragment first has to confirm personal information, give

some search criteria for the pages to be used in this

process. Then, she must interact with a visualisation

of the chosen pages. For this activity, it is desirable

to provide the user with the freshest possible snapshot,

therefore additions between the beginning of the process

instance, and the moment when the user starts the last

activity, should be propagated.

3) As a macro over the previous option and the process

structure, one could wish for ΔR to be propagated to

instances of all activities that are yet to be started in a
running process.
Use case: Intuitively, data should not ”disappear” dur-

ing the execution of a process instance (unless explicitly

deleted). In the previous use case, if we add an extra

activity at the end of the process, that activity would

typically expect to see the whole result of the previous

one.

4) Propagate the update ΔR to all the terminated instances
of a given activity. We can moreover specialize the

behavior on whether we consider only activity instances

whose process instances have terminated, only activity
instances whose process instances are still running, or
both.

Use case: We consider a process whose first activities

are automatic processing steps, e.g., computing diffs
between the old and the new version of a Wikipedia

page, updating a user’s contribution, the page history etc.

The last activity is a visualisation one where the scientist

should be shown fresh data. Typically, the visualisation

activity will last for a while, and it may refresh itself at

intervals, to reflect the new data. In this case, it makes

sense to apply the automated processing activities to the

new pages received while running the process instance,

even after the respective activities have finished.

5) Propagate the update ΔR to all the running instances of

a given activity, whether they had started before tΔR or

not.

Use case: This may be used to propagate newly arrived

tuples to all running instances of a visualisation activity,
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Fig. 5. EdiFlow architecture.

to keep them up-to-date.

Formally then, an update propagation action can be de-

scribed as:

UP ::= R, a, ((’ta’, (’rp’|’tp’)) | ’ra’ | (’fa’, ’rp’))
where R is a relation and a is an activity. An update propaga-
tion action describes a set of instances of activity a, to which
the updateΔR must be propagated. The possible combinations

of terminal symbols designate:

ta rp: terminated activity instances part of running processes;
ta tp: terminated activity instances part of terminated pro-

cesses;

ra: running activity instances (obviously, part of running

processes);

fa rp: future activity instances part of running processes.
It is possible to specify more than one compensation action

for a given R and a given activity a. For instance, one may
write: (R, a, ’ra’), (R, a, ’fa’, ’rp’).
For simplicity, the syntax above does not model the macro

possibility numbered 3 in our list of options. One can easily

imagine a syntax which will then be compiled into UP ’s as
above, based on the structure of P .

VI. AN ARCHITECTURE FOR REACTIVE PROCESSES

Our proposed architecture is depicted in Figure 5. This

architecture is divided into 3 layers:

• The DBMS: The workflow management logic runs on top

of the DBMS. The database ensures the relation between

the pther layers. The databsase contains all informations

about thr process execution and data tables of several

entities.

• The ediflow process: It corresponds to the XML specifica-

tion of the process. Processes are specified in a high-level

syntax following the structure described in Section V.

Processes are specified in a high-level syntax following

the structure described in Section V.

• The modules: This is a set of procedures and functions

invoked by the user through the process file. These

modules may correspond to visualization softwares.

Processes are specified in a high-level syntax following the

structure described in Section V. The enactment of a process

thus specified consists of adding the necessary tuples to the

Process and Activity relations. During process executions, the

necessary data manipulation statements are issued to (i) record
in the database the advancement of process and activity

instances, (ii) evaluate on the database queries and updates,

allow external procedures to read and update the application-

driven entities and (iii) record the connections between users
and application instances, and application data.

In the sequel, Section VI-A shows how to implement various

degrees of isolation between concurrent processes operating

on top of the same database. Section VI-B outlines update

propagation. Section VI-C considers an important performance

issue: efficient synchronization between memory-resident ta-

bles, that visualisation uses, and disk-resident tables.

A. Isolation

Applications may require different levels of sharing (or,

conversely, of isolation) among concurrent activities and pro-

cesses.

Process- and activity-based isolation Let a1 be an instance
of activity a, such that a1 is part of a process instance p1. By
default, queries evaluated during the execution of p carry over
the whole relations implementing the application-specific data

model. Let R be such a relation.

It may be the case that a1 should only see the R tuples cre-

ated as part of executing p1. For instance, when uploading an
experimental data set, a scientist only sees the data concerned

by that upload, not the data previously uploaded by her and

others. Such isolation is easily enforced using relationships

between the application relations and the ActivityInstance table
(recall Figure 3 in Section IV). A query fetching data from

R for a1 should select only the R tuples created by p1, the
process to which a1 belongs, etc. These mechanisms are fairly
standard.

Time-based isolation As discussed in Section V, the data

visible to a given activity or process instance may depend on

the starting time of that instance. To enable such comparisons,

we associate to each application table R a creation timestamp,
which is the moment when each R tuple entered the database

(due to some process or external update). R tuples can then

be filtered by their creation date.

Isolating process instances from tuple deletions requires

a different solution. If the process instance p3 erases some

tuples from R, one may want to prevent the deleted tuples

from suddenly disappearing from the view of another running

process instance, say p4. To prevent this, tuples are not

actually deleted from R until the end of p3’s execution. We
denote that moment by p3.end. Rather, the tuples are added
to a deletion table R−. This table holds tuples of the form
(tid, tdel, pid,⊥), where tid is the deleted R tuple identifier,

tdel the deletion timestamp, pid the identifier of the process

deleting the tuple. The fourth attribute will take the value

p3.end at the end of p3. To allow p3 to run as if the deletion
occurs, EdiFlow rewrites queries of the form select * from R
implementing activities of p3 with:
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select * from R where tid not in
(select tid from R− where pid=p3)

When p3 terminates, if no other running process instance

uses table R1, then we delete from R and R− the tuples

σpid=p3(R−). Otherwise, R and R− are left unchanged,

waiting for the other R users to finish. However, a process

instance started after t0 > p3.end should not see tuples in R−
deleted by p3, nor by any other process whose end timestamp
is smaller than t0. In such a recently-started process, a query
of the form select * from R is rewritten by EdiFlow as:

select * from R where tid not in
(select tid from R− where processend < t0)

We still have to ensure that deleted tuples are indeed

eventually deleted. After the check performed at the end of

p3, Ediflow knows that some deletions are waiting, in R−, for
the end of a process instances started before p3.end. We denote
these process instances by waitR,p3 . After p3.end, whenever a
process in waitR,p3 terminates, we eliminate it from waitR,p3 .

When the set is empty, the tuples σpid=p3(R−) are deleted
from R and R−.

B. Update propagation

We now discuss the implementation of the update prop-

agation actions described in Section V. EdiFlow compiles

the UP (update propagation) statements into statement-level

triggers which it installs in the underlying DBMS. The trigger

calls EdiFlow routines implementing the desired behavior,

depending on the type of the activity (Section V), as follows.

Variable assignments are unaffected by updates. Propagating

an update ΔRi to relation Ri to a query expression leads to in-

crementally updating the query, using well-known incremental

view maintenance algorithms [30]. Propagating an update to

an activity involving a procedure call requires first, updating

the input expressions, and then, calling the corresponding delta

handler.

C. Synchronizing disk-resident and in-memory tables

The mechanisms described above propagate changes to

(queries or expression over) tables residing in the SQL DBMS.

However, the visualisation software running within an instance

of a visualisation activity needs to maintain portions of a table

in memory, to refresh the visualisation fast. A protocol is then

needed to efficiently propagate updates made to a disk-resident

table, call it RD, to its possibly partial memory image, call

it RM . Conversely, when the visualisation allows the user to

modify RM , these changes must be propagated back to RD.

Observe that RM exists on the client side and therefore may

be on a different host than RD.

To that end, we install CREATE, UPDATE and DELETE

triggers monitoring changes to the persistent table RD. When-

ever one such change happens, the corresponding trigger adds

1The definition of a process explicitly lists the tables it uses, and from
the process, one may retrieve the process instances and check their status
(Figure 3).

to the Notification table stored in the database (recall the data

model in Figure 3) one tuple of the form (seq no, ts, tn, op),
where seq no is a sequential number, ts is the update times-
tamp, tn is the table name and op is the operation performed.
Then, a notification is sent to RM that ”there is an update”.

Smooth interaction with a visualization component requires

that notifications be processed very fast, therefore we keep

them very compact and transmit no more information than

the above. A notification is sent via a socket connected to the

process instance holding RM . Information about the host and

port where this process runs can be found in the Client table

(Figure 3). When the visualisation software decides to process

the updates, it reads them from the Notification table, starting

from its last read seq no value.

The synchronization protocol between RM and RD can be

summarized as:

1) A memory object is created in the memory of the Java
process (RM ).

2) It asks the connection manager to create a connection
with the database.

3) The connection manager creates a network port on the

local machine and associates locally a quadruplet to RM :

(db,RD, ip, port).
4) The quadruplet is sent to the DBMS to create an entry

in the ConnectedUser table.

5) The DBMS connects back to the client using at the ip :
port address, and expects a HELLO message to check

that it is the right protocol.

6) The connection manager accepts the connection, sends

the HELLO message and expects a REPLY message to

check that it is the expected protocol too.

7) When the RD is modified, the DBMS trigger sends a

NOTIFY message with the table name as parameter to

client at ip:port, which holds RM .

8) The visualization software may decide what are the

appropriate moments to refresh the display. When it

decides to do so, it connects to the DBMS and queries

the created/updated/deleted list of rows, and propagates

the changes to RM .

9) When RM is modified, it propagates its changes to the

RD and processes the triggered notifications in a smart

way to avoid redundant work.

10) When RM is deleted, it sends a disconnect message

to the database that closes the socket connection and

removes the entry in the ConnectedUser table.

11) The Notification table can be purged of entries having

seq no lower than the lowest value in the Client table.

At first glance, this mechanism may look similar to updates

over views (a.k.a. materialized views). However, our architec-
ture has two main differences compared to materialized views:

• Propagation process. The propagation process for mate-

rialized views is relatively simple. Indeed, when changes

occur on relations, the corresponding relevant views are

updated. The difficulty is to know ”when” and ”how” the

view should be updated. Moreover, updates are gener-
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Fig. 6. EdiFlow architecture for managing several visualization views.

ally limited to insertions aggregations. However, in our

architecture, a change that occurs on a relation may

invoke many different update operations which generally

correspond to external program’s invocations. This is

what we call repair mechanism.
• Two-way propagation. In the framework of materialized

views, updates are usually done in one way (relation to-

wards view). However, our architecture allows to manage

changes that occur on the database while the analysis

process is running. Moreover, it allows to update the

database when users perform visual interaction.

Ediflow can maintain several visualization views for one

visualization. As shown in Figure 6, the visual attributes can

be shared by several visualization views and by several users

that may choose to visualize some or all of the data (e.g. on

an iPhone showing 10% of the data, on a laptop showing 30%

and on our WILD Wall-Sized display [31]) showing all of the

data.
Moreover, in applications such as the INRIA co-publications

example outlined in Section III, a user may want to visualize

a scatter plot displaying the number of publications per year

on one machine and displaying the number of publication by

author on another machine. The two are obtained from the

same data but using two different views. To this purpose,

the visualization component computes and fills the visual

attributes only once regardless of the number of generated

views. For each view, a display component is activated to show

the data on the associated machine using a visualization toolkit

such as Prefuse [3] or the InfoVis Toolkit [4]. This architecture

offers several advantages:

• It allows sharing visual attributes by different views and

maintaining consistency between data and views.

• The computation of visual attributes is done only once.

If an update occurs, the VisualAttributes table is updated

and all associated views will be automatically updated.

• Such architecture can satisfy the principle of visualiza-

tion: a visualization may have several views.

In practice, to display the co-publications graph on the

WILD, we used a workstation running the visualization mod-

ule and a cluster of 16 machines to display the graph over the

32 screens of the WILD. Each machine controls two screens

and runs an Ediflow instance to launch visualization view

modules. When the data is updated, the DBMS notifies the

visualization module to compute new visual attributes and

to insert them into the VisualAttributes relation. Then, the

database notifies the running visualization view modules that

they need to refresh all displays.

D. EdiFlow tool implementation

EdiFlow is implemented in Java, and currently we have

deployed it on top of both Oracle 11g and MySQL 5. EdiFlow

processes are specified in a simple XML syntax, closely

resembling the XML WfMC syntax XPDL [32].

Procedures are implemented as Java modules using the

Equinox implementation of the OSGi Service Platform [33].

A procedure instance is a concrete class implementing the

EdiflowProcess interface. This interface requires four methods:

initialize(), run(ProcessEnv env), update(ProcessEnv env) and
String getName(). The class ProcessEnv represents a pro-

cedure environment, including all useful information about

the environment in which the processes are executed. An

instance of ProcessEnv is passed as a parameter to a newly

created intance of a procedure. Integrating a new processing

algorithm into the platform requires only implementing one

procedure class, and serving the calls to the methods. All the

dependencies in term of libraries (JAR files) are managed by

the OSGi Platform.

The implementation is very robust, well documented, effi-

cient in term of memory footprint and lightweight for program-

ming modules and for deploying them, which is important for

our goal of sharing modules. We have implemented and ran

the sample applications described in Section III.

VII. EXPERIMENTAL VALIDATION

A. Experimental setup

In this Section, we report on the performance of the EdiFlow

platform in real applications.

Hardware Our measures used a client PC with Intel

2.66GHz Dual Core CPUs and 4GB memory running. Java

heap size was set to 850MB. The Oracle database is mounted
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on a workstation with 8 CPUs equipped with 8GB RAM. The

PC is connected to the database through the local area network.

Dataset We used a dataset of co-publications between

INRIA researchers. We analyse this data set to produce visual

results which have interesting insight for the INRIA scientific

managers, and has to proceed while new publications are

added to the database. This dataset includes about 4500 nodes

and 35400 edges. The goal is to compute the attributes of each

node and edge, display the graph over one or several screens

and update it as the underlying data changes.

B. Layout procedure handlers

Our first goal was to validate the interest of procedure

handlers in the context of data visualization. In our INRIA

co-publication scenario, the procedure of interest is the one

computing the positions of nodes in a network, commonly

known as layout. We use the Edge LinLog algorithm of

Noack [34] which is among the very best for social networks,

and provides aesthetically good results. What makes EdgeLin-

Log even more interesting in our context is that it allows

for effective delta handlers (introduced as part of our process

model in Section V).

In our implementation, the initial computation assigns a

random position to each node and runs the algorithm iteratively

until it converges to a minimum energy and stabilizes. This

computation can take several minutes to converge but, since

the positions are computed continuously, we can store the

positions in the database at any rate until the algorithm stops.

Saving the positions every second or at every iteration if it

takes more than one second allows the system to appear reac-

tive instead of waiting for minutes before showing anything.

If the network database changes, for example when new

publications are added to/removed from the database, the

handler proceeds in a slightly different manner. First, it updates

the in-memory co-publication graph, discards the nodes that

have been removed and adds new nodes. To each new node

it assigns a position that is close to their neighbors that have

already been laid-out. This is to improve the time and quality

of the final layout. If disconnected nodes are added, they

are assigned a random position. Then, the algorithm is run

iteratively like for the initial computation, but it terminates

much faster since most of the nodes will only move slightly:

the convergence of the iterations will be much faster. Like

before, we store in the DBMS the results of some of the

iterations to allow the visualization views to show them.

Using this strategy, we have obtained an incremental layout

computation, remarkably stable and fast.

C. Robustness evaluation

Our second experimental goal was to study how the EdiFlow

event processing chain scales when confronted with changes

in the data. For this experiment, the DBMS is connected via a

100 MHz Ethernet connection to two EdiFlow instances run-

ning on two machines. The first EdiFlow machine computes

visual attributes (runs the layout procedure), while the second

Fig. 7. Part of the graph of INRIA co-publications.
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extracts nodes from VisualAttributes table and displays the

graph. This second EdiFlow machine is a laptop.

We study the robustness of our architecture when adding

increasing numbers of tuples to the database. Inserting tuples

requires performing the sequence of steps below, out of which

steps 1, 2 are performed on the first EdiFlow machine, while

steps 3, 4 and 5 are performed on all machines displaying the

graph.

1) Parsing the message involved after insertion in nodes

table. It refers to step 7 in the protocol described in

section VI-C.

2) Inserting the resulting tuples in the VisualAttributes table

managed by EdiFlow in the DBMS.

3) Parsing the message involved after insertion in VisualAt-

tributes table. After inserting tuples, in VisualAttributes,

a message is sent to all machines displaying the graph.

The message is parsed to extract the new tuple infor-

mation. It refers to step 9 in the protocol described in

section VI-C.

4) Extracting the visual attributes of the new nodes, from

the VisualAttributes table, in order to know how to
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display them at the client.

5) Inserting new nodes into the display screen of the second

machine.

The times we measured for these five steps are shown in

Figure 8 for different numbers of inserted data tuples. The

Figure demonstrates that the times are compatible with the

requirements of interaction, and grow linearly with the size of

the inserted data. The dominating time is required to write in

the VisualAttributes table. This is the price to pay for having

these attributes stored in a place from where one can share

them or distribute them across several displays.

VIII. CONCLUSION

In this article, we have described the design and imple-

mentation of EdiFlow, the first workflow platform aimed at

capturing changes in data sources and launching a repair

mechanism. EdiFlow unifies the data model used by all of

its components: application data, process structure, process

instance information and visualization data. It relies on a

standard DBMS to realize that model in a sound and predictive

way. EdiFlow supports standard data manipulations through

procedures and introduces the management of changes in the

data through update propagation. Each workflow process can

express its behavior w.r.t data change in one of its input

relations. Several options are offered to react to such a change

in a flexible way.

EdiFlow reactivity to changes is necessary when a human

is in the loop and needs to be informed of changes in the

data in a timely fashion. Furthermore, when connected to

an interactive application such as a monitoring visualization,

the human can interactively perform a command that will

change the database and trigger an update propagation in the

workflow, thus realizing an interactively driven workflow.

We are currently using EdiFlow to drive our Wikipedia

aggregation and analysis database as a testbed to provide

real-time high-level monitoring information on Wikipedia,

in the form of visualizations or textual data [26]. We are

also designing a system for computing and maintaining a

map of scientific collaborations and themes available on our

institutions.

We still need to experiment with it to find out the limitations

of EdiFlow in term of performances, typical and optimal

reaction time and ability to scale with very large applications.

We strongly believe that formally specifying the services

required for visual analytics in term of user requirements,

data management and processing, and providing a robust

implementation is the right path to develop the fields of visual

analytics and scientific workflows together. For more details,

examples, pictures and videos of the usage of EdiFlow, see

the EdiFlow website: http://scidam.gforge.inria.fr/.

REFERENCES

[1] J. Thomas and K. Cook, Eds., Illuminating the Path: Research and
Development Agenda for Visual Analytics. IEEE Press, 2005.

[2] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan, “Maintaining interac-
tivity while exploring massive time series,” in VAST, 2008.

[3] J. Heer, S. Card, and J. Landay, “Prefuse: a toolkit for interactive
information visualization,” in SIGCHI, 2005.

[4] J.-D. Fekete, “The InfoVis toolkit,” in InfoVis, 2004.
[5] “Protovis,” http://vis.stanford.edu/protovis/.
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